

ECE317 : Feedback and Control

Lecture : Stability Routh-Hurwitz stability criterion

Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University

Course roadmap

Matlab & PECS simulations & laboratories

Stability

- Utmost important specification in control design!
- Unstable systems have to be stabilized by feedback.
- Unstable closed-loop systems are useless.
- What if a system is unstable? ("out-of-control")
 - It may hit mechanical/electrical "stops" (saturation).
 - It may break down or burn out.
 - Signals diverge.
- Examples of unstable systems
 - Tacoma Narrows Bridge collapse in 1940
 - SAAB Gripen JAS-39 prototype accident in 1989
 - Wind turbine explosion in Denmark in 2008

Definitions of stability

• **BIBO** (Bounded-Input-Bounded-Output) **stability** *Any bounded input generates a bounded output.*

Asymptotic stability

Any ICs generates y(t) converging to zero.

Some terminologies

$$G(s) = \frac{n(s)}{d(s)} \qquad \text{Ex.} \quad G(s) = \frac{(s-1)(s+1)}{(s+2)(s^2+1)}$$

- Zero: roots of n(s) (Zeros of G) = ± 1
- Pole: roots of d(s) (Poles of G) = $-2, \pm j$
- Characteristic polynomial: *d(s)*
- Characteristic equation: *d(s)=0*

Stability condition in *s*-domain (Proof omitted, and not required)

• For a system represented by transfer function G(s),

Idea of stability condition

• Example $y'(t) + \alpha y(t) = r(t)$

$$\Rightarrow sY(s) - y(0) + \alpha Y(s) = R(s)$$
$$\Rightarrow Y(s) = \frac{1}{s + \alpha} (R(s) + y(0))$$

Asym. Stability:
$$y(t) = \mathcal{L}^{-1} \{Y(s)\} = \mathcal{L}^{-1} \left\{ \frac{1}{s+\alpha} y(0) \right\} = e^{-\alpha t} y(0) \rightarrow 0 \Leftrightarrow \operatorname{Re}(-\alpha) < 0$$

($r(t) = R(s) = 0$)

BIBO Stability: (*y*(0)=0)

$$y(t) = \mathcal{L}^{-1}\{Y(s)\} = \mathcal{L}^{-1}\{G(s)R(s)\} = \int_0^t g(\tau)r(t-\tau)d\tau = \int_0^t e^{-\alpha\tau}r(t-\tau)d\tau$$
$$|y(t)| \le \int_0^t |e^{-\alpha\tau}||r(t-\tau)|d\tau \le \int_0^t |e^{-\alpha\tau}|d\tau \cdot r_{max}$$

Bounded if $Re(-\alpha) < 0$

Remarks on stability

- For general systems (nonlinear, time-varying), BIBO stability condition and asymptotic stability condition are different.
- For linear time-invariant (LTI) systems (to which we can use Laplace transform and we can obtain transfer functions), these two conditions happen to be the same.
- In this course, since we are interested in only LTI systems, we use simply "stable" to mean both BIBO and asymptotic stability.

Time-invariant & time-varying

- A system is called *time-invariant (time-varying)* if system parameters do not (do) change in time.
- Example: *Mx''(t)=f(t)* & *M(t)x''(t)=f(t)*
- For time-invariant systems:

• This course deals with time-invariant systems.

Remarks on stability (cont'd)

- Marginally stable if
 - G(s) has no pole in the open RHP (Right Half Plane), and
 - G(s) has at least one simple pole on jw-axis, and
 - G(s) has no multiple pole on jw-axis.

$$G(s) = \frac{1}{s(s^2+4)(s+1)^2} \qquad G(s) = \frac{1}{s(s^2+4)^2(s+1)^2}$$

Marginally stable NOT marginally stable

Unstable if a system is neither stable nor marginally stable.

"Marginally stable" in t-domain

- For any bounded input, except only special sinusoidal (bounded) inputs, the output is bounded.
 - In the example above, the special inputs are in the form of:

$$f(t) = \alpha \sin \sqrt{Kt} + \beta \cos \sqrt{Kt} \quad \Rightarrow \quad x(t) \to \pm \infty$$

• For any nonzero initial condition, the output neither converge to zero nor diverge.

Stability summary

Let <i>si</i> be <mark>poles</mark> of <i>G(s)</i> .	Im		
Then, <i>G(s)</i> is	↑		
 (BIBO, asymptotically) stable if	Stable	Unstable	
Re(si)<0 for all i.	region	region	
 marginally stable if <i>Re(si)<=0</i> for all <i>i</i>, and simple pole for <i>Re(si)=0</i> upstable if it is peither stable 	Stable	Unstable	→ Re
nor marginally stable.	region	region	

Exan	nples 🚱
G(s)	Stable/marginally stable /unstable
$\frac{20}{(s+1)(s+2)(s+3)}$?
$\frac{20(s+1)}{(s-1)(s^2+2s+3)}$?
$\frac{10(s-1)e^{-s}}{(s+5)(s^2+3)}$?
$\frac{1}{(s+5)(s^2+2)^2}$?
$\frac{1}{s^4 + 5s^3 + 10s^2 + 3s + 1}$???

Course roadmap

Matlab & PECS simulations & laboratories

Routh-Hurwitz criterion

- This is for LTI systems with a *polynomial* denominator (without sin, cos, exponential etc.)
- It determines if all the roots of a polynomial
 - lie in the open LHP (left half-plane),
 - or equivalently, have negative real parts.
- It also determines the number of roots of a polynomial in the open RHP (right half-plane).
- It does NOT explicitly compute the roots.
- No proof is provided in any control textbook.

• Consider a polynomial

$$Q(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$

- Assume $a_0 \neq 0$
 - If this assumption does not hold, Q can be factored as

$$Q(s) = s^m \underbrace{(\hat{a}_{n-m}s^{n-m} + \dots + \hat{a}_1s + \hat{a}_0)}_{\widehat{Q}(s)}$$

where $\hat{a}_0 \neq 0$

• The following method applies to the polynomial $\hat{Q}(s)$

Routh array

Routh array (How to compute the third row)

s^n	$ a_n $	a_{n-2}	a_{n-4}	a_{n-6}
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	$a_{n-7} \cdots$
s^{n-2}	b_1	<i>b</i> ₂	<i>b</i> 3	<i>b</i> ₄ ···
s^{n-3}	c_1	<i>c</i> ₂	Сз	<i>c</i> ₄ ····
:	:	:	Г	$a_{m} = 2a_{m} + 1 - a_{m}a_{m} = 2$
<i>s</i> ²	k_1	k_2		$b_1 = \frac{a_{n-2}a_{n-1} - a_{n}a_{n-3}}{a_{n-1}}$
s^1	l_1			$b_{2} - \frac{a_{n-4}a_{n-1} - a_{n}a_{n-5}}{a_{n-5}}$
s^0	m_1			a_{n-1}
	1			

Routh array (How to compute the fourth row)

Routh-Hurwitz criterion

s^n	a_n	a_{n-2}	a_{n-}	-4	a_{n-6}	• • •
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-}	-5	a_{n-7}	• • •
s^{n-2}	b_1	b_2	b_3		<i>b</i> 4	• • •
s^{n-3}	c_1	<i>c</i> ₂	сз		С4	• • •
:	:	÷	Г			
<i>s</i> ²	k_1	k_2		i	The in the o	number of roots pen right half-plane
s^1	l_1			,		is equal to
s^0	$\mid m_1 \mid$			t in t	he num he first	, nber of sign changes column of Routh array.

Example 1

 $Q(s) = s^3 + s^2 + 2s + 8 \ (= (s+2)(s^2 - s + 4))$

Routh array

Two sign changes in the first column $1 \rightarrow -6 \rightarrow 8$

Two roots in RHP $\frac{1}{2} \pm \frac{j\sqrt{15}}{2}$

Example 2

 $Q(s) = s^3 + 3s^2 + 6s + 8 \ (= (s+2)(s^2 + s + 4))$

Routh array

No sign changes in the first column $1 \rightarrow 3 \rightarrow 10/3 \rightarrow 8$

Simple important criteria for stability

• 1st order polynomial $Q(s) = a_1s + a_0$

All roots are in LHP $\Leftrightarrow a_1$ and a_0 have the same sign

• 2nd order polynomial $Q(s) = a_2s^2 + a_1s + a_0$

All roots are in LHP $\Leftrightarrow a_2$, a_1 and a_0 have the same sign

• Higher order polynomial $Q(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$ All roots are in LHP \Rightarrow All a_k have the same sign

Exan	nples 🚱
Q(s)	All roots in open LHP?
3s + 5	Yes / No
$-2s^2 - 5s - 100$	Yes / No
$523s^2 - 57s + 189$	Yes / No
$(s^2 + s - 1)(s^2 + s + 1)$	Yes / No
$s^3 + 5s^2 + 10s - 3$	Yes / No

Summary

- Stability for LTI systems
 - (BIBO, asymptotically) stable, marginally stable, unstable
 - Stability for G(s) is determined by poles of G(s).
- Routh-Hurwitz stability criterion
 - to determine stability without explicitly computing the poles of a system
- Next, examples of Routh-Hurwitz criterion