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Stability

• Utmost important specification in control design!

• Unstable systems have to be stabilized by feedback.

• Unstable closed-loop systems are useless.

• What if a system is unstable? (“out-of-control”)
• It may hit mechanical/electrical “stops” (saturation).

• It may break down or burn out.

• Signals diverge.

• Examples of unstable systems
• Tacoma Narrows Bridge collapse in 1940

• SAAB Gripen JAS-39 prototype accident in 1989

• Wind turbine explosion in Denmark in 2008

3



Definitions of stability

• BIBO (Bounded-Input-Bounded-Output) stability
Any bounded input generates a bounded output.

• Asymptotic stability

Any ICs generates y(t) converging to zero.
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BIBO stable 

system

r(t) y(t)ICs=0

Asymp. stable 

systemr(t)=0
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Some terminologies

• Zero: roots of n(s)

• Pole: roots of d(s)

• Characteristic polynomial: d(s)

• Characteristic equation: d(s)=0
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Stability condition in s-domain 
(Proof omitted, and not required)

• For a system represented by transfer function G(s),

System is BIBO stable

All the poles of G(s) are in the open left half of 
the complex plane.

System is asymptotically stable
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Idea of stability condition

• Example
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Asym. Stability: 

(r(t)=R(s)=0)

BIBO Stability: 

(y(0)=0)

Bounded if Re(-a)<0



Remarks on stability

• For general systems (nonlinear, time-varying),   
BIBO stability condition and asymptotic stability 
condition are different.

• For linear time-invariant (LTI) systems (to which we 
can use Laplace transform and we can obtain 
transfer functions), these two conditions happen to 
be the same.

• In this course, since we are interested in only LTI 
systems, we use simply “stable” to mean both BIBO 
and asymptotic stability.
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Time-invariant & time-varying

• A system is called time-invariant (time-varying) 
if system parameters do not (do) change in time.

• Example: Mx’’(t)=f(t) & M(t)x’’(t)=f(t)

• For time-invariant systems:

• This course deals with time-invariant systems.
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Remarks on stability (cont’d)

• Marginally stable if
• G(s) has no pole in the open RHP (Right Half Plane), and

• G(s) has at least one simple pole on jw-axis, and

• G(s) has no multiple pole on jw-axis.

• Unstable if a system is neither stable nor marginally 
stable.
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Marginally stable NOT marginally stable



“Marginally stable” in t-domain

• For any bounded input, except only special sinusoidal 
(bounded) inputs, the output is bounded.
• In the example above, the special inputs are in the form of:

• For any nonzero initial condition, the output neither 
converge to zero nor diverge.
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Stability summary

Let si be poles of G(s).   
Then, G(s) is …

• (BIBO, asymptotically) stable if

Re(si)<0 for all i.

• marginally stable if

• Re(si)<=0 for all i, and

• simple pole for Re(si)=0

• unstable if it is neither stable 
nor marginally stable.
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Mechanical examples
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Examples
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Routh-Hurwitz criterion

• This is for LTI systems with a polynomial
denominator (without sin, cos, exponential etc.)

• It determines if all the roots of a polynomial 
• lie in the open LHP (left half-plane),

• or equivalently, have negative real parts.

• It also determines the number of roots of a 
polynomial in the open RHP (right half-plane).

• It does NOT explicitly compute the roots.

• No proof is provided in any control textbook.
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Polynomial and an assumption

• Consider a polynomial

• Assume
• If this assumption does not hold, Q can be factored as

where

• The following method applies to the polynomial
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Routh array
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From the given 

polynomial



Routh array 
(How to compute the third row)
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Routh array 
(How to compute the fourth row)
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Routh-Hurwitz criterion

21

The number of roots 

in the open right half-plane 

is equal to 

the number of sign changes

in the first column of Routh array.



Example 1
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Routh array

Two sign changes

in the first column
Two roots in RHP



Example 2
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Routh array

No sign changes

in the first column
No roots in RHP

Always same!



Example 3 (from slide 14)
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Routh array

No sign changes

in the first column
No roots in RHP

Always same!



Simple important criteria for stability

• 1st order polynomial

• 2nd order polynomial

• Higher order polynomial
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Examples
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All roots in open LHP?

Yes / No

Yes / No

Yes / No

Yes / No

Yes / No



Summary

• Stability for LTI systems
• (BIBO, asymptotically) stable, marginally stable, unstable

• Stability for G(s) is determined by poles of G(s).

• Routh-Hurwitz stability criterion
• to determine stability without explicitly computing the 

poles of a system

• Next, examples of Routh-Hurwitz criterion
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