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Stability &p

e Utmost important specification in control design!
e Unstable systems have to be stabilized by feedback.
* Unstable closed-loop systems are useless.

 What if a system is unstable? (“out-of-control”)
* It may hit mechanical/electrical “stops” (saturation).
* |t may break down or burn out.
* Signals diverge.

* Examples of unstable systems

e Tacoma Narrows Bridge collapse in 1940
* SAAB Gripen JAS-39 prototype accident in 1989
* Wind turbine explosion in Denmark in 2008



Definitions of stability G(%-D

* BIBO (Bounded-Input-Bounded-Output) stability
Any bounded input generates a bounded output.

|ICs=0
r(t) . y(t)
BIBO stable
system

* Asymptotic stability
Any ICs generates y(t) converging to zero.

ICs y(t)

B Asymp. stable R
0=0 —1 “system [ L\~
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Some terminologies G(%-D

__n(s) (s—1)(s+1)
G(s) = _
() d(s) =X Gls) = (s+2)(s2+ 1)
* Zero: roots of n(s) (Zeros of G) = +1
* Pole: roots of d(s) (Poles of G) = 2,4

e Characteristic polynomial: d(s)

e Characteristic equation: d(s)=0



Stability condition in s-domain G%,)

(Proof omitted, and not required)

* For a system represented by transfer function G(s),

System is BIBO stable

i

All the poles of G(s) are in the open left half of

the complex plane.

i

System is asymptotically stable




Idea of stability condition C-%D

e Example ¢/(t) 4+ ay(t) = r(t)

== sY(s) —y(0) + aY(s) = R(s)

= Y(s) = (R(s)+5(0))

Asym. Stability: (¢} = 1 {y :ﬁ‘l{_ 0}: (0 - 0. Re(a) < 0
((0=R(&)=0) y(t) {Y(s)} : +ay() ¢ 4(0) = 0 & Re(-a)

BIBO Stability: — YN = G R(s) =
O Stabiiy: yf)= ™ 1(9) =™ (0GR =

t t
()] < [O 70 |In(t — )|dr < /O €07 |dr - Pmag

Bounded if Re(—a)<0

t f

g(7)r(t-7)dr = /0 e Tr(t-r)dr
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Remarks on stability G(%-D

* For general systems (nonlinear, time-varying),
BIBO stability condition and asymptotic stability
condition are different.

* For linear time-invariant (LTI) systems (to which we
can use Laplace transform and we can obtain
transfer functions), these two conditions happen to
be the same.

* In this course, since we are interested in only LTI
systems, we use simply “stable” to mean both BIBO
and asymptotic stability.



Time-invariant & time-varying C-%D

* A system is called time-invariant (time-varying)
if system parameters do not (do) change in time.

* Example: Mx”(t)=f(t) & M(t)x”(t)=f(t)
* For time-invariant systems:

N’r’(t) f\/y(t)

téo ‘rﬂm% hift \System‘ fto s‘ﬁm%shift

; r(t — 1)
tO to—l—T tO tO+T

* This course deals with time-invariant systems.



Remarks on stability (cont’d) C-(%D

* Marginally stable if
* G(s) has no pole in the open RHP (Right Half Plane), and
* G(s) has at least one simple pole on jw-axis, and
* G(s) has no multiple pole on jw-axis.

1 1
G(s) = G(s) =
S I iy o P
Marginally stable NOT marginally stable

* Unstable if a system is neither stable nor marginally
stable.
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“Marginally stable” in t-domain C%D

K f(t)
le ‘ X(S): 1
F(s) s2+K
== X

* For any bounded input, except only special sinusoidal
(bounded) inputs, the output is bounded.

* In the example above, the special inputs are in the form of:

f(H) =asinVEH+oosVEE = o(t) - foc

* For any nonzero initial condition, the output neither
converge to zero nor diverge.
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Stability summary C-(%B

Let si be poles of Gfs).
Then, G(s) is ...

e (BIBO, asymptotically) stable if
Re(si)<0 for all i.

* marginally stable if
* Re(si)<=0 for all i, and
e simple pole for Re(si)=0

e unstable if it is neither stable
nor marginally stable.

Im

Stable Unstable
region region

»

Re
Stable [|Unstable

region region
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Mechanical examples

M

&

f(t)
m) X(s) 1

| F(s)
! X(t)  Poles=
stable?
> £(t)
X(s 1
— " F(s) ~ 52+ Bs
! " X()  poles=

stable?

F(s) s2+K

N ix

X(t)

Poles=
stable?

Poles=
stable?
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Examples G(%'D

Stable/marginally stable
G(s) /unstable

20
(s+1)(s+2)(s+3)

20(s+ 1)
(s —1)(s2 4+ 25+ 3)

10(s — 1)e~ ¢
(s +5)(s2 + 3)
1
(s +5)(s2 + 2)2
1
s +5s3+4+10s2+3s+1 77?7
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Routh-Hurwitz criterion G(%-D

* This is for LTI systems with a polynomial
denominator (without sin, cos, exponential etc.)

* It determines if all the roots of a polynomial
e lie in the open LHP (left half-plane),
e or equivalently, have negative real parts.

|t also determines the number of roots of a
polynomial in the open RHP (right half-plane).

* It does NOT explicitly compute the roots.
* No proof is provided in any control textbook.
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Polynomial and an assumption G(%-D

* Consider a polynomial
Q(s) =ans" +a, 15" L+ +ays+ag

« Assume ag 7 O
* If this assumption does not hold, Q can be factored as
Q(s) = Smgan—msn_m + -+ a1s+ E:’\JO)J
Q(s)

where ag #= 0O
* The following method applies to the polynomial Q(s)
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Routh array

Up—2

An—4

Un—6

* h

&

From the given
polynomial

Q(s) = ans" + an_lsn_l +tags+ag

Up—-1 an-3 dp-5 0Gp_7
b1 bo b3 by
c1 o c3 ca

k1 k2

l1

18



Routh array c%-:
(How to compute the third row)
an An—2 Ap—-4 Ap—6 * -

Unp—-1 4n—-3 apn-5 Qap-7 - °°

?’L—Q‘ b1 b b3 ba ‘

c1 co c3 cq
by = (Up—20p—1—0nlp-3

kl kQ 1 - an—l

Iy —  Up—40p—1~Unln-5
by = p

m1 n-1
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Routh array

(How to compute the fourth row)

@

an An—2 Ap—-4 Ap—6 * -

Unp—-1 4n-3 anp-5 Qap-7 *°°

b1 bo b3 ba E

c1 Co c3 ca : ‘

| | (p_3b1—0y,_1b

k1 ko (= n—3 lb n—1Y2
1

1 o = n=5010y-1b3

mi 2 bl
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Routh-Hurwitz criterion

Anp—2
an—3
bo b3
2 3

ko

An—4

anp_5

An—6
Un—7

b4

C4

&

The number of roots
In the open right half-plane
IS equal to

the number of sign changes
In the first column of Routh array.
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Q(s) = s>

S

Example 1

2 4 og

Routh array

s3 |1
s2 |1

s!
SO 47

2

8 (= (s+2)(s%—s

o

8 x (—6) —0

Two sign changes
In the first column

l——-6—8

—6

Two roots in RHP
1 N jv/15
2 2

4))
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1

Q(s) = s°

Example 2

352

Routh array

s3 11

SO<

o
3

6s

8 (= (s+2)(s°

Always same!

No sign changes

In the first column
»3 —10/3 — 8

No roots in RHP
1 45415

—2, — = &
27 2

&

4))
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Example 3 (from slide 14) C%D

Q(s) = s* 4+ 553+ 10s°+3s+ 1

Routh array 41 10 1
s3|5 3 |
s? | 47/5 1
s | (positive) \
911 < Always same!

No sign changes :
. ‘ No roots iIn RHP
INn the first column
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Simple important criteria for stabilityec%'3
* 1s* order polynomial  ((s) = ays + ag
All roots are in LHP & ay and ag have the same sign
« 2" order polynomial Q(s) = ays® + a1s + ag
All roots are in LHP & a9, a7 and ag have the same sign
* Higher order polynomial () :ans”+an_1s“_1+---+a13-|—a0

All roots are in LHP@ All a;. have the same sign
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Examples G(%'D

Q(s) All roots in open LHP? |

3s+5 Yes / No

-2s - 55~ 100 Yes /No

523s° - 575+ 189 Yes / No
(s°+s—1)(s*+s+1) Yes / No

s>+ 552+ 10s -3 Yes / No
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Summary G(%-D

e Stability for LTI systems
e (BIBO, asymptotically) stable, marginally stable, unstable
* Stability for G(s) is determined by poles of G(s).

* Routh-Hurwitz stability criterion

* to determine stability without explicitly computing the
poles of a system

* Next, examples of Routh-Hurwitz criterion
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